A Fast Algorithm for Finding Dominators
in a Flowgraph

THOMAS LENGAUER and ROBERT ENDRE TARJAN
Stanford University

A fast algoritbin for finding dominators in a flowgraph is presented. The algorithm uses depth-first
search and an efficient method of computing functions defined on paths in trees. A simple implemen-
tation of the algorithm runs in O(m log n) time, where m is the number of edges and n is the number
of vertices in the problem graph. A more sophisticated implementation runs in O(ma(m, n)) time,
where a(m, n) is a functional inverse of Ackermann’s function.

Both versions of the algorithm were implemented in Algol W, a Stanford University version of
Algol, and tested on an IBM 370/168. The programs were compared with an implementation by
Purdom and Moore of a straightforward O(mn)-time algorithm, and with a bit vector algorithm
described by Aho and Ullman. The fast algorithm beat the straightforward algorithm and the bit
vector algorithm on all but the smallest graphs tested.

Key Words and. Phrases: depth-first search, dominators, global flow analysis, graph algorithm, path

compression
CR Categories: 4.12, 4.34, 5.25, 5.32

1. INTRODUCTION

The following graph problem arises in the study of global flow analysis and
program optimization [2, 6]. Let G = (V, E, r) be a flowgraph' with start vertex
r. A vertex v dominates another vertex w % v in G if every path from r to w
contains v. Vertex v is the immediate dominator of w, denoted v = idom(w), if v
dominates w and every other dominator of w dominates v.

THEOREM 1 [2, 6]. Every vertex of a flowgraph G = (V, E, r) except r has a
unique immediate dominator. The edges {(idom(w), w)|w € V — {r}) form a
directed tree rooted at r, called the dominator tree of G, such that v dominates
w if and only if v is a proper ancestor of w in the dominator tree. See Figures 1
and 2.

We wish to construct the dominator tree of an arbitrary flowgraph G. If G
represents the flow of control of a computer program which we are trying to

! Appendix A contains the graph-theoretic terminology used in this paper.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing' Machinery. Po copy otherwise, or to republish, requires a fee and/or specific
permission.

The research of the first author was partly supported by the German Academic Exchange Service.
The research of the second author was partly supported by the National Science Foundation under
Grant MCS75-22870 and by the Office of Naval Research under Contract N00014-76-C-0688.
Authors’ address: Computer Science Department, Stanford University, Stanford, CA 94305.

© 1979 ACM 0164-0925/79/0700-0121 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979, Pages 121-141

12 . T. Lengauer and R. £. Tarjan

To :
edges
the alg
requirt

Aho
nators.
bit vec
severa
furthes
encode

This
O(nm)
time, t
howev
small,
small (

In tl
proble:
structu
simple
more ¢
a{m, n
For int
1, 2) if
min{i:

The
proviny
analysi

e progral

versior
progra
with ar
tested
This
first se.
correct
Fig. 2. Dominator tree of flowgraph in Fig. 1 in [9] a
the alg

4 discu

’ ulation
underst
conclus

Fig. 1. A flowgraph

optimize, then the dominator tree provides information about what kinds of code
motion are safe. For further details see [2, 6].

Aho and Ullman [2] and Purdom and Moore [17] describe a straightforward
algorithm for finding dominators. For each vertex v s r, we carry out the following .
step. 2. DEF

General Step. Determine, by means of a search from r, the set S of vertices
reachable from r by paths which avoid ¢. The vertices in V — {v} — S are exactly The fas
those which v dominates. first se.

Knowing the set of vertices dominated by each vertex. it is an easy matter 1o numbe;
construct the dominator tree. search.

ACM "Transactions on Programming Fanguages and Svstems, Yol 1. No 1, July 1979

A Fast Algorithm for Finding Dominators in a Fiowgraph . 123

To analyze the running time of this algorithm, let us assume that G has m
edges and n vertices. Each execution of the general step requires O (m) time, and
the algorithm performs n — 1 executions of the general step; thus the algorithm
requires O(mn) time total.

Aho and Ullman [3] describe another simple algorithm for computing domi-
nators. This algorithm manipulates bit vectors of length n. Each vertex v has a
bit vector which encodes a superset of the dominators of v. The algorithm makes
several passes over the graph, updating the bit vectors during each pass, until no
further changes to the bit vectors occur. The bit vector for each vertex v then
encodes the dominators of v.

This algorithm requires O (m) bit vector operations per pass for O (n) passes, or
O(nm) bit vector operations total. Since each bit vector operation requires O(n)
time, the running time of the algorithm is O(n*m). This bound is pessimistic,
however; the constant factor associated with the bit vector operations is very
small, and on typical graphs representing real programs the number of passes 1s
small (on reducible flowgraphs [3] only two passes are required [4]).

In this paper we shall describe a faster algorithm for solving the dominators
problem. The algorithm uses depth-first search [9] in combination with a data
structure for evaluating functions defined on paths in trees [14]. We present a
simple implementation of the algorithm which runs in O(m log n) time and a
more sophisticated implementation which runs in O(ma{m, n)) time, where
alm, n) is a functional inverse of Ackermann’s function [1], defined as follows.
For integers i, j =2 0, let A(;, 0) = 0if i = 0, A(0, /) = 2/ifj =1, AG, 1) = A(i —
L2)ifi =1, and A(, j) = At — 1, A(;,j— 1)) ifi = 1, j = 2. Then a(m, n) =
min{i = 1|A(i, | 2m/n |) > logn}.

The algorithm is a refinement of earlier versions appearing in [10-12]. Although
proving its correctness and verifying its running time require rather complicated
analysis, the algorithm is quite simple to program and is very fast in practice. We
programmed both versions of the algorithm in Algol W, a Stanford University
version of Algol, and tested the programs on an IBM 370/168. We compared the
programs with a transcription into Algol W of the Purdom-Moore algorithm and
with an implementation of the bit vector algorithm. On all but the smallest graphs
tested our algorithm beat the other methods.

This paper consists of five sections. Section 2 describes the properties of depth-
first search used by the algorithm and proves several theorems which imply the
correctness of the algorithm. Some knowledge of depth-first search as described
in [9] and [10, sec. 2] is useful for understanding this section. Section 3 develops
the algorithm, using as primitives two procedures that manipulate trees. Section
4 discusses two implementations, simple and sophisticated, of these tree manip-
ulation primitives. Some knowledge of [14, secs. 1, 2, and 5] is useful for
understanding this section. Section 5 presents our experimental results and
conclusions.

2. DEPTH-FIRST SEARCH AND DOMINATORS

The fast dominators algorithm consists of three parts. First, we perform a depth-
first search on the input flowgraph G = (V, E, r), starting from vertex r, and
numbering the vertices of G from 1 to n in the order they are reached during the
search. The search generates a spanning tree 7 rooted at r, with vertices

ACM Transactions on Programming Languages and Systems, Vol. 1. No. 1. July 197§

Lengauer and H E Tarjan

, '_'T:(.’;"_.-'-{
.I; /h‘_x
{ 1.’ _.
/
{ F)(3,C) {6.C)
[/
| /
i /
/
\
\ g
\ (4,R) 'é——_ 7,G)
\
\ -
\ \ e
\ —~
\ /I -
\ -
\ X/, -~
5,R)(K

Fig. 3. Depth-first search of flowgraph in Fig. 1. Solid edges are spanning tree edges; dashed edges
are nontree edges. Number in parentheses is vertex number; letter is semidominator

numbered in preorder [5]. See Figure 3. For convenience in stating our results,
we shall assume in this section that all vertices are identified by number.

The following paths lemma is an important property of depth-first search and
is crucial to the correctness of the dominators algorithm.

Lemma 1[9]). If v and w are vertices of G such that v < w, then any path from
U o w must contain a common ancestor ofvandwin T.

Second, we compute a value for each vertex w # r called its semidominaior,
denoted by sdom(w) and defined by

sdom(w) = min{v|there is a path v = vy, vy, ..., vx = w such that (1)
v>wforl=<i<k-1}.

See Figure 3. Third, we use the semidominators to compute the immediate
dominators of all vertices.

The semidominators have several properties which make their computation a
convenient intermediate step in the dominators calculation. If w # ris any vertex,
then sdom(w) is a proper ancestor of w in T, and idom{w) is a (not necessarily
proper) ancestor of sdom(w). If we replace the set of nontree edges of G by the
set of edges {(sdom(w), w) |w € V and w » r}, then the dominators of vertices in
G are unchanged. Thus if we know the spanning tree and the semidominators, we
can compute the dominators.

In the remainder of this section we prove the properties of semidominators and
immediate dominators which Justify the algorithm. The following three lemmas
give basic relationships among the spanning tree, the semidominators, and the
immediate dominators.

ACM Transactions on Programming Languages and Svstems, Vol 1, No. i, July 14749

A Fast Algorithm for Finding Dominators in a Flowgraph

LEMMA 2. For any vertex w # r, idom(w) — w?
Proor. Any dominator of w must be on the path in T from r tow. Ul

LEMMA 3. For any vertex w # r, sdom{uw) - w.

Proor. Let parent(w) be the parent of w in T. Since (parent(w), w) is an edge
of G, by (1) sdom{w) < parent(w) < w. Also by (1), there is a path sdom(w) = vo,
Uy, ...,y =wsuchthat v, >wfor 1 <i <k — 1. By Lemma 1, some vertex v, on
the path is a common ancestor of sdom(w) and w. But such a common ancestor
v, must satisfy v; < sdom(w). This means { = 0, 1.e. v; = sdom(w), and sdom{w) is
a proper ancestor of w. [

LEMMA 4. For any vertex w # r, idom(w)-> sdom(w).

Proor. By Lemmas 2 and 3, idom(w) and sdom(w) are proper ancestors of w.
The path consisting of the tree path from r to sdom(w) followed by a path
sdom(w) = vy, Uy, ..., Uy = wsuch that v, > w for 1 =t < k — 1 (which must exist
by (1)) avoids all proper descendants cf sdom(w) which are also proper ancestors
of w. It follows that idom(w) is an ancestor of sdom(w). [

LEMMA 5. Let vertices v, w satisfy v-> w. Then v-5 idom(w) or idom(w) -
tdom(v).

Proor. Let x be any proper descendant of idom(v) which is also a proper
ancestor of v. By Theorem 1 and Corollary 1, there is a path from r to v which
avoids x. By concatenating this path with the tree path from v to w, we obtain a
path from r to w which avoids x. Thus idom(w) must be either a descendant of
v or an ancestor of idom(v).

Using Lemmas 1-5, we obtain two results which provide a way to compute
immediate dominators from semidominators.

THEOREM 2. Let w # r. Suppose every u for which sdom(w)>> u -> w satisfies
sdom(u) = sdom(w). Then idom(w) = sdom(w).

Proor. By Lemma 4, it suffices to show that sdom(w) dominates w. Consider
any path p from r to w. Let x be the last vertex on this path such that
x < sdom{w). If there is no such x, then sdom(w) = r dominates w. Otherwise, let
y be the first vertex following x on the path and satisfying sdom(w)-> y - w. Let
g = (x = vy, Uy, Uz, ..., Ux =) be the part of p from x to y. We claim v, > y for
1 <i=<k — 1. Suppose to the contrary that some v, satisfies v; < y. By Lemma 1,
some v, with { <j < & — 1 is an ancestor of y. By the choice of x, v, = sdom(w),
which means sdom(w) - v, > y -» w, contradicting the choice of y. This proves
the claim.

The claim together with the definition of semidominators implies that
sdom(y) < x < sdom{w). By the hypothesis of the theorem, y cannot be a proper
descendant of sdom(w). Thus y = sdom(w) and sdom(w) lies on the path p. Since
the path selected was arbitrary, sdom(w) dominates w. [J

THEOREM 3. Let w # r and let u be a vertex for which sdom(u) is minimum
among vertices u satisfying sdom{(w) - u > w. Then sdom(u) < sdom(w) and
tdom(u) = idom(w).

¢ Throughout this paper the notation “x <> ¥ means that x is an ancestor of y in the spanning tree

T generated by the depth-first search, and “x B y' means x - vy and x # y.

ACM Transactions on Programming l.anguages and Systems, Vol 1, No. 1, July 1979.

126 . T. Lengauer and R. E. Tarjan

ProoFr. Let z be the vertex such that sdom(w) — z -5 w. Then sdom(u) <
sdom(z) < sdom(w).

By Lemma 4, idom(w) is an ancestor of sdom(w) and thus a proper ancestor of
u. Thus by Lemma 5 idom{w) <> idom(u). To prove idom(u) = idom(w), it
suffices to prove that idom(u) dominates w.

Consider any path p from r to w. Let x be the last vertex on this path satisfying
x < idom(u). If there is no such x, then idom(u) = r dominates w. Otherwise, let
¥ be the first vertex following x on the path and satisfying idom(u) -5 y <> w. Let
q = (x = o, 11, Uz, ..., Uy = y) be the part of p from x to y. As in the proof of
Theorem 2, the choice of x and y implies that v; > y for 1 < i < k — 1. Thus
sdom(y) = x. Since idom(u) < sdom{u) by Lemma 4, we have sdom(y) < x <
tdom(u) < sdom{u).

Since u has the smallest semidominator among vertices on the tree path from
z to w, y cannot be proper descendant of sdom(w). Furthermore, y cannot be
both a proper descendant of idom(u) and an ancestor of u, for if this were the
case the path consisting of the tree path from r to sdom(y) followed by a path
sdom(y) = vo, Uy, ..., tx = y such that v; > y for 1 <i < k — 1 followed by the tree
path from y to u would avoid idom(u); but no path from r to u avoids idom{u).

Since idom(u) <> v-> u > w and idom(u) <> y <> w, the only remaining pos-
sibility is that idom(u) = y. Thus idom(u) lies on the path from r to w. Since the
path selected was arbitrary, idom(u) dominates w. O3

CoroLLARY 1. Let w # r and let u be a vertex for which sdom(u) is minimum
among vertices u satisfying sdom(w) = u > w. Then

sdom(w) if sdom(w) = sdom(u),
tdom(u) otherwise.

idom(w) = { (2)
ProoOF. Immediate from Theorems 2 and 3.

The following theorem provides a way to compute semidominators.
THEOREM 4. For any vertex w # r,

sdom(w) = min({v| (v, w) € E and v < w} U {sdom(u)|u > w and
there is an edge (v, w) such that u-> v}).

PRoOF. Let x equal the right-hand side of (3). We shall first prove that sdom(w)
< x. Suppose x is a vertex such that (x, w) € E and x < w. By (1), sdom(w) = x.
Suppose on the other hand x = sdom(u) for some vertex u such that u > w and

there is an edge (v, w) such that u - v. By (1) thereis a path x = vo, vy, ..., U; =
usuch that v, >u > wfor1 <i<j— 1 Thetree path u = v;—> U3, — ** — Uk,
=vsatisfiesv, = u>wforj<i<k— 1. Thus the pathx = vo, vy, .. , Va1 = U, Ux
= w, satisflies v, > wfor 1 = i<k ~ 1. By (1), sdom(w) < x.

It remains for us to prove that sdom(w) = x. Let sdom(w) = vo, vy, ..., Us = w

be a simple path such that v, > wfor1<i<k - 1. If k = 1, (sdom(w), w) € E,
and sdom(w) < w by Lemma 3. Thus sdom(w) = x. Suppose on the other hand
that £ > 1. Let j be minimum such that j > 1 and v, v,-;. Such a ; exists since
k — 11is a candidate for J.

We claim ¢, > v, for 1 =i =<, — 1. Suppose to the contrary that v, < v, for some
i in the range 1 =i < j — 1. Choose the i such that 1 < i</ — 1 and v is

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph . 127

minimum. By Lemma 1, v; -» v,, which contradicts the choice of J. This proves
the claim.

The claim implies sdom(w) = sdom(v;) = x. Thus whether 2 = 1 or k > 1, we
have sdom(w) = x, and the theorem is true. [l

3. A FAST DOMINATORS ALGORITHM

In this section we develop an algorithm which uses the results in Section 2 to find
dominators. Earlier versions of the algorithm appear in [10-12}; the version we
present is refined to the point where it is as simple to program as the straightfor-
ward algorithm [2, 7] or the bit vector algorithm [3, 4}, similar in speed on small
graphs, and much faster on large graphs.

The algorithm consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph. Number the vertices from 1 to n as they
are reached during the search. Initialize the variables used in succeeding steps.

Step 2. Compute the semidominators of all vertices by applying Theorem 4. Carry out the compu-
tation vertex by vertex in decreasing order by number.

Step 3. Implicitly define the immediate dominator of each vertex by applying Corollary 1.

Step 4. Explicitly define the immediate dominator of each vertex, carrying out the computation
vertex by vertex in increasing order by number.

Our implementation of this algorithm uses the following arrays.

Input

succe(v): The set of vertices w such that (v, w) is an edge of the graph.

Computed

parent{w). The vertex which is the parent of vertex w in the spanning tree generated by the search.
pred(w): The set of vertices v such that (v, w) is an edge of the graph.

semi(w): A number defined as follows:

(i) Before vertex w is numbered, semi(v) = 0.

(i1} After w is numbered but before its semidominator is computed, semi(w) is the
number of w.

(iii) After the semidominator of w is computed, semi(w) is the number of the semidom-

inator of w.
vertex(i): The vertex whose number is i.
bucket(w): A set of vertices whose semidominator is w.

dom(w): A vertex defined as follows:

(i) After step 3, if the semidominator of w is its immediate dominator, then dom(w) is
the immediate dominator of w. Otherwise dom(w) is a vertex v whose number is
smaller than w and whose immediate dominator is also w's immediate dominator.

(i) After step 4, dom{w) is the immediate dominator of w.

Rather than converting vertex names to numbers during step 1 and converting
numbers back to names at the end of the computation, we have chosen to refer
to vertices as much as possible by name. Arrays semi and vertex incorporate all
that we need to know about vertex numbers. Array semi serves a dual purpose,
representing (though not simultaneously) both the number of a vertex and the
number of its semidominator. As well as saving storage space, this device allows
us to simplify the computation of semidominators by combining the two cases of
Theorem 4 into one.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

128 . T. Lengauer and R. E. Tarjan

Here is an Algol-like version of step 1.
stepl: n:=0;
for each v € V do pred(v) := @, semi{v) = 0 od;
DFS(r);

Step 1 uses the recursive procedure DFS, defined below, to carry out the depth-
first search. When a vertex ¢ receives a number i, the procedure assigns
semi(v) := [and vertex(i) := .
procedure DFS(vertex);

begin

semi(v) :==n:=n+ 1,
vertex{n) .= v,
comment initialize variables for steps 2, 3, and 4;
for each w € suce(v) do
if semi(w) = 0 then parent(w) = 1 DFS(uw) fi;
add v to pred{w) od
end DFS;

After carrying out step 1, the algorithm carries out steps 2 and 3 simultaneously,
processing the vertices w # r in decreasing order by number. During this
computation the algorithm maintains an auxiliary data structure which represents
a forest contained in the depth-first spanning tree. More precisely, the forest
consists of vertex set V and edge set {(parent(w), w) | vertex w has been proc-
essed). The algorithm uses one procedure to construct the forest and another to
extract information from it:

LINK(v, w): Add edge (v, w) to the forest.

EVAL(v): If v is the root of a tree in the forest, return v. Otherwise, let r be the root of the tree
in the forest which contains v. Return any vertex u # r of minimum semi(u) on the
path r = ¢

To process a vertex w, the algorithm computes the semidominator of w by
applying Theorem 4. The algorithm assigns semi(w) ;= min{semi(EVAL(t)) |
(v, w) € E}. After this assignment, semi(w) is the number of the semidominator
of w. To verify this claim, consider any edge (v, w) € E. If v is numbered less
than w, then v is unprocessed, which means v is the root of a tree in the forest
and semi(v) is the number of v. Thus semi{EVAL(v)) is the number of v. If v is
numbered greater than w, then v has been processed and is not a root. Thus
EVAL(v) returns a vertex u among vertices numbered greater than w satisfying
u - v whose semidominator has the minimum number, and semi(EVAL(v)) is
the number of u’s semidominator. This means that the algorithm perforins exactly
the minimization specified in Theorem 4.)

After computing semi(w), the algorithm adds w to bucket(vertex(semi(w))) and
adds a new edge to the forest using LINK (parent(w), w). This completes step 2
for w. The algorithm then empties bucket(parent(w)), carrying out step 3 for each
vertex in the bucket. Let v be such a vertex. The algorithm implicitly computes
the immediate dominator of ¢ by applying Corollary 1. Let v = EVAL(t) Then

u is the vertex satisfying parent(u) — u - v whose semidominator has minimum
number. If semi(u) = semiiv), then parent(w) is the immediate dominator of ¢
and the algorithm assigns dom(r) = parent(tw). Otherwise v and v have the same

ACM Transactions on Programming Languages and Svstems, Vol 1. No 1 Jubv 197y

A Fast Algorithm for Finding Dominators in a Flowgraph . 129

dominator and the algorithm assigns dom(v) = u. This completes step 3 for v.
Here is an Algol-like version of steps 2 and 3 which uses LINK and EVAL.

comment injtialize variables;
for i := n by —1 until 2 do
w = pertex(t),
step2: for each v € pred(w) do
u := EVAL(v); if semi(u) < semi(w) then semi{w) := semi{u) fi od;
add w to bucket(vertex(semi(w))),
LINK((parent(w), w);
step3: for each v € bucket({parent(w)) do
delete v from bucket(parent(w)),
u = EVAL(v);
dom(v) := if semi(u) < semi(v) then u
else parent{w) fi od od;

Step 4 examines vertices in increasing order by number, filling in the immediate
dominators not explicitly computed by step 3. Here is an Algol-like version of
step 4.
stepd: for {:= 2 until n do

w := vertex(i);
if dom{w) # vertex{(semi(w)) then dom(w) := dom(dom{w)) fi od;
dom(r) := 0;

This completes our presentation of the algorithm except for the implementation
of LINK and EVAL. Figure 4 illustrates how the algorithm works.

Figure 4(a) is a snapshot of the graph just before vertex A is processed. Two
edges (B, A) and (R, A) enter vertex A, giving 8 (the number of B) and 1 (the
number of R) as candidates for semi(A). The algorithm assigns semi(A) := 1,
places A in bucket(R), and adds edge (B, A) to the forest. Then the algorithm
empties bucket(B), which contains only D. EVAL(D) produces A as the vertex

on the path B 5> A- D with minimum semi. Since semi(A) = 1 < 8 =
semi(D), idom(A) = tdom(D) and the algorithm assigns dom(D) = A.

Figure 4(b) is a snapshot of the graph just before vertex 1 is processed. Four
edges (F, I), (G, I), (J, I), and (K, I) enter vertex I, giving 3 (the number of F), 2
(semi(Q3)), 2 (semi(G)), and 1 (semi(K)), respectively, as candidates for semi(I).
The algorithm assigns semi(I) = 1, places I in bucket(R), and adds edge (F, I) to
the forest. Then the algorithm empties bucket(F), which contains nothing.

Appendix B contains a complete Algol-like version of the algorithm, including
variable declarations and initialization. Using Theorem 4 and Corollary 1, it is
not hard to prove that after execution of the algorithm, dom(v) = idom(v) for
each vertex v # r, assuming that LINK and EVAL perform as claimed. The
running time of the algorithm is O(m + n) plus time for n — 1 LINK and m + n
— 1 EVAL instructions.

4. IMPLEMENTATION OF LINK AND EVAL

Two ways to implement LINK and EVAL, one simple and one sophisticated, are
provided in [14]. We shall not discuss the details of these methods here, but
merely provide Algol-like implementations of LINK and EVAL which are adapted
from [14].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979

130

Fig. 4(a).

AUM Transactons oy Progrim

T. Lengauer and R. E. Tarjan

»
Snapshot just before processing vertex A. Double lines denote edges in forest. Number in
parentheses is semi: letter in parentheses is dom
»

g 4ihy

Snapshor just belore Processing vertey |

Ny Languages and Svstems Vol 1N Iodulv 1979

A Fast Algorithm for Finding Dominators in a Fiowgraph . 131

The simple method uses path compression to carry out EVAL. To represent
the forest built by the LINK instructions (henceforth called the forest), the
algorithm uses two arrays, ancestor and label. Initially ancestor(v) = 0 and
label(v} = v for each vertex v. In general ancestor(v) = 0 only if v is a tree root
in the forest; otherwise ancestor(v) is an ancestor of v in the forest.

The algorithm maintains the labels so that they satisfy the following property.
Let v be any vertex, let r be the root of the tree in the forest containing v, and let
U = U, Us—s, ..., Uo = r be such that ancestor(v;) = v;-;for 1 <t < k. Let x be a
vertex such that semi(x) is minimum among vertices x €{label(v;)|1 < [< k}.
Then

x is a vertex such that semi(x) is minimum among vertices x 3)
. . + .
satisfying r — x > v.

To carry out LINK(v, w), the algorithm assigns ancestor{w) := v. To carry out
EVAL(v), the algorithm follows ancestor pointers to determine the sequence v
= Ui, Uk-1, ..., Ug = r such that ancestor(v;) = vi-; for1<i<k Ifv=r vis
returned. Otherwise, the algorithm performs a path compression by assigning
ancestor(v;) = r for ¢ from 2 to k, simultaneously updating labels to maintain. (3)
as follows: If semi(label(v,_}) < semi(label(v,)), then label(v;) := label(v:-,).
Then label(v) is returned. Here is an Algol-like procedure for EVAL.

vertex procedure EVAL(v),
if ancestor(v) = 0 then EVAL :=v
else COMPRESS(v); EVAL := label(v) fi;

Recursive procedure COMPRESS, which carries out the path compression, is
defined by

procedure COMPRESS(v);
comment this procedure assumes ancestor(v) # 0,
if ancestor(ancestor(v)) # 0 then
COMPRESS(ancestor(v));
if semi(label(ancestor{v))) < semi(label(v)) then
label(v) = labellancestor(v)) fi;
ancestor{v) := ancestor(ancestor(v)) fi;

The time required for n — 1 LINKs and m + n — 1 EVALs using this
implementation is O(m log n) [14]. Thus the simple version of the dominators
algorithm requires O(m log n) time.

The sophisticated method uses path compression to carry out the EVAL
instructions but implements the LINK instruction so that path compression is
carried out only on balanced trees. See [14]. The sophisticated method requires
two additional arrays, size and child. Initially size{v) = 1 and child{v) = O for all
vertices v. Here are Algol-like implementations of EVAL and LINK using the
sophisticated method. These procedures are adapted from [14].
vertex procedure EVAL(v);

comment procedure COMPRESS used here is identical to that in the

simple method.

if ancestor(v) = 0 then EVAL := label(v)

else COMPRESS(v):

EVAL := if semi(label{ancestor(v))) = semi({label(v))
then label(v) else label(ancestor(v)) fi fi;

ACM Transactions on Programming Languages and Systems, Vol. 1. No. 1, July 1479

132 . T. Lengauer and R. E. Tarjan

procedure LINK (v, w);
begin
comment this procedure assumes for convenience that
size{0) = label(D) = semi(0) = 0;
s:=w;
while semillabel(w)) < semi(label(child(s))) do
if size(s) + size(child(child(s))) = 2s)size(child(s)) then
parent{child(s)) := s; child(s) := child(child(s))
else size(child(s)) := size(s);
s = parent(s) := child(s) fi od;
label(s) = label(w);
size{v) := size(v) + size{w);
if size(v) < 2+size(w) then s, child(v) = child(v), s fi;
while s # 0 do parent(s) .= v; s := child(s) od
end LINK;

With this implementation, the time required for n — 1 LINKsand m + n — 1
EVALs is O(ma(m, n)), where a is the functional inverse of Ackerman’s function
[1] defined in the Introduction. Thus the sophisticated version of the dominators
algorithm requires O(ma(m, n)) time.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

We performed extensive experiments in order to qualitatively compare the actual
performance of our algorithm with that of the Purdom-Moore algorithm [7] and
that of the bit vector algorithm. We translated both versions of our algorithm as
contained in Appendix B into Algol W and ran the programs on a series of
randomly generated program flowgraphs.

Table I and Figures 5 and 6 illustrate the results. The sophisticated version
beat the simple version on all graphs tested. The relative difference in speed was
between 5 and 25 percent increasing with increasing n. It is important to note
that the running times of the algorithms are insensitive to the way the test graphs
are selected; for fixed m and n the running times vary very little on different
graphs, whether the graphs are chosen randomly or by some other method. This
is also true for the Purdom-Moore algorithm.

Table I. Running Times in 107° Sec of the Simple and Sophisticated Versions of the Fast Algorithm
(Three Graphs for Each Value of n)

Simple Sophisticated Simple Sophisticated
n Min Max Min Max n Min Max Min Max
1 2.0 2.1 19 2.0 200 46.4 47.2 36.2 36.4
20 4.3 4.4 3.7 3.9 300 70.1 72.3 55.0 55.7
30 6.2 6.8 5.5 5.8 400 98.5 101 74.7 78.1
40 8.0 8.8 7.1 7.6 500 123 125 92.0 93.7
50 10.5 114 8.9 9.6 600 150 152 110 120
60 124 134 10.9 11.6 700 176 181 130 137
70 14.6 15.4 12.6 13.1 800 214 217 158 167
80 17.4 18.6 145 15.6 900 238 244 173 188
90 20.0 20.2 16.7 16.8 1000 263 268 192 206

100 22.4 22.7 18.0 19.3

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979,

A Fast Algorithm for Finding Dominators in a Flowgraph . 133

0
25
n e
i) _/ -
| i
15 b
TIME
w0l SIMPLE
SOPHISTICATED
sk
0 i i)1 1 1 1 1 Il L I
0 20 40 60 80 100
n

Fig. 5. Running times in 10~ sec of the simple and sophisticated versions of the fast algorithm

300

250 -

200 +

150 |-
TIME SIMPLE

100 +

SOPHISTICATED

50 -

o Ji ! I i Il L i i | H
0 200 400 600 800 1000

n

Fig. 6. Running times in 107" sec of the simple and sophisticated versions of the fast algorithm
g p

ACM Transactions on Programming Languages and Systems. Vol 1, No. 1, July 1979

134 . T. Lengauer and R. E. Tarjan

We transcribed the Purdom-Moore algorithm into Algol W and ran it and the
sophisticated version of our algorithm on another series of program flowgraphs.
Table Il and Figure 7 show the results. Our algorithm was faster on all graphs
tested except those with n = 8. The Purdom-Moore algorithm rapidly became
noncompetitive as n increased. The tradeoff point was about n = 10.

We implemented the bit vector algorithm using a set of procedures for manip-
ulating multiprecision bit vectors. (Algol W allows bit vectors only of lenigth 32 or
less.) Table III gives the running time of this algorithm on the second series of
test graphs, and Figure 8 compares the running times of the bit vector algorithm
and the sophisticated version of our algorithm. The speed of the bit vector
algorithm varied not only with m and n, but also with the number of passes
required (two, three, or four on our test graphs). However, the bit vector method
was always slower than our algorithm.

There are several ways in which the bit vector algorithm can be made more
competitive. First, the bit vector procedures can be inserted in-line to save the
overhead of procedure calls. We made this change and observed a 33-45-percent
speedup. The corresponding change in the fast algorithm, inserting LINK and
EVAL in-line, produced a 20-percent speedup. These changes made the bit vector
algorithm aimost as fast as our algorithm on graphs of less than 32 vertices, but
on larger graphs the bit vector algorithm remained substantially slower than our
algorithm. See Tables I and IV and Figure 9.

Second, the bit vector procedures can be written in assembly language. To
provide a fair comparison with the fast algorithm, it would be necessary to write
LINK and EVAL in assembly language. We did not try this approach, but we

Table II. Running Times in 107* Sec of the Purdom-Moore Algorithm
and the Sophisticated Version of the Fast Algorithm (Threa Graphs for
Each Value of n)

In-line
Sophisticated sophisticated Purdom-Moore
n Min Max Min Max Min Max
8 1.7 1.7 1.4 1.5 1.3 14
16 3.0 3.2 2.5 2.6 4.6 4.7
24 4.4 4.5 3.6 3.7 10.1 10.3
32 58 6.1 4.7 4.8 18.4 186
40 7.4 7.6 6.0 6.1 29.4 29.6
48 8.8 9.2 7.0 7.4 408 425
56 10 11 8.0 8.8 56.5 58.2
64 12 13 9.3 10.0 74.3 75.5
72 13.2 13.8 10.3 10.9
80 14.9 15.1 11.8 12.0
88 16.5 174 13.0 13.9
96 17.7 179 14.0 145
104 19.3 20.4 15.4 16.4
112 19.9 20.6 159 16.7
120 22.3 23.4 17.7 19.0
128 23.5 23.8 18.7 19.2

ACM Transactions on Programming Languages and Systems, Vol. [, No. I, July 1479

® w ¥

ks YT Y e ey

—_— W

A Fast Algorithm for Finding Dominators in a Flowgraph

[

80
70 +
.60 -
50

40 -
TIME

10

PURDOM—-MOOQRE

H

SOPHISTICATED

i

1

1

0

Table III. Running Times in 10 Sec and Number of Passes of the Bit
Vector Algorithm (Three Graphs for Each Value of n)

Fig. 7. Running times in 10™* sec of the Purdom-Mo

30
n

40

the fast algorithm

50

60

Bit vector

n Time Passes Time Passes Time Passes
8 3.2 3 3.4 3 3.4 3
16 6.3 3 6.3 3 6.4 3
24 9.3 3 94 3 9.5 3
32 12.4 3 12.4 3 15.7 4
40 12.8 2 12.9 2 17.3 3
48 20.9 3 20.9 3 21.0 3
56 24.3 3 24.3 3 24.3 3
64 279 3 28.2 3 28.2 3
72 256 2 35.1 3 355 3
80 28.6 2 39.2 3 39.6 3
88 43.7 3 43.8 3 44.1 3
96 46.6 3 47.7 3 47.7 3
104 40.6 2 41.0 2 56.0 3
112 43.9 2 43.9 2 61.3 3
120 65.9 3 66.0 3 66.6 3
128 0.5 3 7.3 3 1.5 4

70

135

ore algorithm and the sophisticated version of

ACM Transactions on Programming Languages and Systems, Vol. 1. No. 1. Jolv 1979,

136 - T. Lengauer and R. E. Tarjan

100
90 *

4 PASSES

80 |-

60

50 - /
TIME

/PASSES

40
3 PASSES

/
/

/
APASSES

30 |-
BIT VECTOR

20
4 PASSES,
‘.2 PASSES

10 SOPHISTICATED

0 L I\ l 1 i 1
0 20 40 60 80 100 120 140
n

Fig. 8. Running times in 107* sec of the bit vector algorithm and the sophisticated version of the
fast algorithm

believe that the fast algorithm would still beat the bit vector algorithm on graphs
of moderate size.

Third, use of the bit vector algorithm can be restricted to graphs known to be
reducible. On a reducible graph only one pass of the bit vector algorithm is
necessary, because the only purpose served by the second pass is to prove that
the bit vectors do not change, a fact guaranteed by the reducibility of the graph.
We believe that a one-pass in-line bit vector algorithm would be competitive with
the fast algorithm on reducible graphs of moderate size, but only if one ignores
the time needed to test reducibility.

The bit vector algorithm has two disadvantages not possessed by the fast
algorithm. First, it requires O(n?) storage, which may be prohibitive for large

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.
guag

A Fast Algorithm for Finding Dominators in a Flowgraph

Tabl(e IV. Running Times in 107 Sec and Number of Passes of the In-
Line Bit Vector Algorithm (Three Graphs for Each Value of n)

In-line bit vector

n Time Passes Time Passes Time Passes
8 1.8 3 1.8 3 1.9 3
16 3.3 3 3.4 3 3.4 3
24 49 3 5.0 3 5.1 3
32 6.4 3 6.5 3 7.9 4
40 7.7 2 7.7 2 10.1 3
48 12.1 3 12.2 3 124 3
56 14.2 3 14.2 3 14.2 3
64 16.1 3 16.3 3 16.3 3
72 16.8 2 22.4 3 22.7 3
80 184 2 24.7 3 24.8 3
88 27.1 3 27.5 3 27.8 3
96 29.5 3 29.6 3 29.8 3
104 27.1 2 27.2 2 38.1 3
112 30.4 2 30.8 2 415
120 440 3 44.1 3 44.3 3
128 46.5 3 46.9 3 60.6 4
70
60 - 4 PASSES *
50 |
|
40 |-
/
TIME /
/
30 |~ /
/ 3 PASSES
20 |- // 3 PASSES
IN-LINE BIT VECTOR / /ZPASSES
10 |- y
4 PASSES.,” .
IN-LINE SOPHISTICATED
0 i 1 i 1 i 1
0 20 40 60 80 100 120 140
n

137

Fig. 9. Running times in 107 sec of the in-line bit vecior algorithm and the in-line snphisticated
version of the fast algorithm

ACM Transactions on Programming Languages and Systems, Vol. . No. 1. Julv 1979

138 . T. Lengauer and R. E. Tarjan

values of n. Second, the dominator tree, not the dominator relation, is required
for many kinds of global flow analysis [8, 13], but the bit vector algorithm
computes only the dominator relation. Computing the relation from the tree is
easy, requiring constant time per element of the relation or O(n) bit vector
operations total. However, computing the tree from bit vectors encoding the
relation requires O(n?) time in the worst case.

We can summarize the good and bad points of the three algorithms as follows:
The Purdom-Moore algorithm is easy to explain and easy to program but slow on
all but small graphs. The bit vector algorithm is equally easy to explain and
program, faster than the Purdom-Moore algorithm, but not competitive in speed
with the fast algorithm unless it is run on small graphs which are reducible or
almost reducible. The fast algorithm is much harder to prove correct but almost
as easy to program as the other two algorithms, is competitive in speed on small
graphs, and is much faster on large graphs. We favor some version of the fast
algorithm for practical applications.

We conclude with a few comments on ways to improve the efficiency of the
fast algorithm. One can speed up the algorithm by rewriting DFS and COM-
PRESS as nonrecursive procedures which use explicit stacks. One can avoid
using an auxiliary stack for COMPRESS by instead using a trick of reversing
ancestor pointers; see [12]. A similar trick allows one to avoid the use of an
auxiliary stack for DFS. One can save some additional storage by combining
certain arrays, such as parent and ancestor. These modifications save running
time and storage space, but only at the expense of program clarity.

APPENDIX A. GRAPH-THEORETIC TERMINOLOGY

A directed graph G = (V, E) consists of a finite set V of vertices and a set E of
ordered pairs (v, w) of distinct vertices, called edges. If (v, w) is an edge, w is a
successor of v and v is a predecessor of w. A graph G, = (V,, E,) is a subgraph of
Gif V,C Vand E, C E. A path p of length k from v to w in G is a sequence of
vertices p = (U= v, vy, ..., Ux = w) such that (i, Uiv1) € E for 0 < i < k. The path
is simple if vo, ..., vy are distinct (except possibly vy = vs), and the path is a cycle
if vo = uvs. By convention there is a path of no edges from every vertex to itself,
but a cycle must contain at least two edges. A graph is acyclic if it contains no
cycles. If py = (u = wo, wy, ..., ur = v) is a path from u to v and p = (v = vy, v,
-» Ur=w) is a path from v to w, the path p, followed bypeisp = (u = up, u,
s UWr=U=Ug, Uy, ..., U= w).

A flowgraph G = (V, E, r) is a directed graph (V, E) with a distinguished start
vertex r such that for any vertex v € V there is a path from r to v. A program
Howgraph is a flowgraph such that each vertex has exactly two successors. A
(directed, rooted) tree T = (V, E, r) is a flowgraph such that | E|=| V| — 1. The
start vertex r is the root of the tree. Any tree is acyclic, and if v is any vertex in
a tree T, there is a unique path from r to v. If v and w are vertices in a tree T and
there is a path from v to w, then v is an ancestor of w and w is a descendant of
v (denoted by v - w). If in addition v w, then v is a proper ancestor of w and

w is a proper descendant of v (denoted by v5 w). If v w and (v, w) is an edge
of T (denoted by v — w), then v is the parent of w and w is a child of v. In a tree

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Fiowgraph - 139

each vertex has a unique parent (except the root, which has no parent). If G =
(V, E)is a graph and T = (V’, E’, r) is a tree such that (V’ E) 1s a subgraph of
G and V= V', then T is a spanning tree of G.

APPENDIX B. THE COMPLETE DOMINATORS ALGORITHM

This appendix contains a complete listing of both versions of the dominators
algorithm. The algorithm assumes that the vertex set of the problem graph is V
={v|l1=v=n).

procedure DOMINATORS(integer set array succ(l : n); integer r, n; integer array
dom(1 :: n));
begin
integer array parent, ancestor, [child,] vertex(1 :: n);
integer array label, semi {, size](0 :: n);
integer set array pred, bucket(1 :: n);
integer u, v, x;

procedure DFS(integer v);
begin
semifv) :=n:=n+1;
vertex(n) := label(v) := v;
ancestor(v) := [child(v) :=]0;
[size(v) := 1;]
for each w € succ(v) do
if semi(w) = 0 then parent(w) := v; DFS(w) fi;
add v to pred{w) od
end DFS;

procedure COMPRESS(integer v);
if ancestor(ancestor(v)) # 0 then
COMPRESS(ancestor(v));
if semi(label(ancestor(v))) < semi(label(v)) then
label(v) := label(ancestor(v)) fi;
ancestor(v) := ancestor{ancestor(v)) fi;

integer procedure EVAL(integer v);
if ancestor(v) = 0 then EVAL := ¢
else COMPRESS(v); EVAL := label(v) fi;

procedure LINK(integer v, w);
ancestor(w) := v,

stepl: for v:= 1 until n do .
pred(v) = bucket(v) :== O, semi(v) := 0 od;
n:=0
DFS(r);
[size(0) := label(0) := semi(0) := 0;]
for i := n by —1 until 2 do
w = vertex(i);
step2: for each v € pred(w) do
u = EVAL(v);
if semi(u) < semi(w) then semi(w) .= semi(u) fi od;
add w to bucket{vertex(semi(w)));
LINK(parent(w), w);
step3: for each v € bucket(parent(w)) do
delete v from bucket(parent(w));
u:= EVAL(v);

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

140 . T. Lengauer and R. E. Tarjan

dom(v) :=. if semi(u) < semi(v) then u
else parent(w) fi od od;
step4d: ¢:=2until n do
w = vertex(i);
if dom(w) # vertex(semi(w))
then dom(w) := dom(do(w)) fi od;
dom(r) := 0

end DOMINATORS;

The simple version of the algorithm consists of the procedure above, with
everything in brackets deleted. The sophisticated version of the algorithm consists
of the procedure above, with everything in brackets included, and the following
procedures substituted for EVAL and LINK.

integer procedure EVAL(integer v);
if ancestor(v) = 0 then EVAL := label(v)
else COMPRESS(v);
EVAL := if semi(label(ancestor(v))) = semi(label(v))
then label(v) else label(ancestor(v)) fi fi;

procedure LINK(integer v, w);
begin integer s;
s:=uw;
while semi(label(w)) < semi(label(child(s))) do
if size(s) + size(child(child(s))) = 2-size(child(s))
then ancestor(child(s)) := s;
child(s) := child(child(s))
else size(child(s)) := size(s);
8 := ancestor(s) := child(s) fi od;
label(s) .= label(w);
size(v) := size(v) + size(w);
if size(v) < 2.size(w) then s, child(v) = child(v), s fi;
while s # 0 do ancestor(s) := v; 8 := child(s) od
end LINK;

REFERENCES

1. ACKERMANN, W. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Ann. 99 (1928), 118-133.
2. AHo, AV, AND ULLMaN, J.D. The Theory of Parsing, Translation, and Compiling, Vol. II:
Compiling. Prentice-Hall, Englewood Cliffs, N.J., 1972
3. AHo, AV, aND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass.,
1977.
4. Hecur, M.S,, aNp ULLMAN, J.D. A simple algorithm for global data flow analysis problems.
SIAM J. Comput. 4 (1973), 519-532.
5. KNUTH, D.E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-
Wesley, Reading, Mass., 1968.
6. Lorry, E.S.. AND MEDLOCK, C.W. Object code optimization. Comm. ACM 12,1 (Jan. 1969), 13-
22.
7. PurDpOM, P.W., AND MooORE, E.F. Algorithm.430: Immediate predominators in a directed graph.
Comm. ACM 15, 8 (Aug. 1972), 777-778.
8. RErr, J. Combinatorial aspects of symbolic program analysis. Tech. Rep. TR-11-77, Center for
Research in Computing Technology, Harvard U., Cambridge, Mass., 1977,
9. TarJAN, RE. Depth-first search and linear graph algorithms. SIAM J, Comptng. I (1972), 146-
160.
10. TarsaN, R. Finding dominators in directed graphs SIAM J. Comptng. 3 (1974), 62-89.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

2

A Fast Algorithm for Finding Dominators in a Flowgraph . 141

11. Tarsan, RE. Edge-disjoint spanning trees, dominators, and depth-first search. Tech. Rep.
STAN:CS-74-455, Comptr. Sci. Dept.. Stanford U., Stanford, Calif.. 1974.

12. TarJaN, R.E. Applications of path compression on balanced trees. Tech. Rep. STAN-CS8-75-512,
Comptr. Sci. Dept., Stanford U., Stanford, Calif., 1975.

13. Tarsan, R.E. Solving path problems ori directed graphs. Tech. Hep. STAN-CS-528, Comptr. Sci.
Dept.. Stanford U., Stanford, Calif., 1975.

14. TarJan. R.E. Applications of path compression on balanced trees. To appear in JJ. ACM

Received December 1977; revised March 1979

ACM Transactions on Programming Languages and Systems, Vol 10 No 1o Jobv 14749,

